Протокол лабораторных испытаний № <u>0314/20</u> От 07.02.2020г.

Заказчик:

Автономная некоммерческая организация «Российская система качества» (ИНН 9705044437); Юридический адрес: 115184, Россия, г. Москва, Средний Овчинниковский

пер., д.12

Наименование образца: Масса творожная с изюмом

Упаковка:

Потребительская упаковка из комбинированных материалов, обезличенная

Заказчиком. Целостность упаковки не нарушена.

Маркировка образца: Шифр 152РСК0009/1; пломба № 09038264.

Сведения об образце: образец для испытания отобран и предоставлен в ИЛ

представителями Заказчика в соответствии с запросом о проведении испытаний и актом приема-передачи образцов от 23.01.2020г и запросом о проведении испытаний 24.01.2020г. Количество образца: 7 единиц фасовки Образец предоставлен на испытания в пакете из полимерных материалов опломбированном пластиковой

пломбой красного цвета №09038264

Образец испытан:

по органолептическим, физико-химическим, микробиологическим показателям и показателям безопасности в соответствии с заявкой Заказчика

Дата и время приемки образца: 24.01.2020г. 15:07

Температура образца при приемке: +4,9°C.

Дата проведения испытаний: в период с 24 января по 07 февраля 2020 года.

Количество листов в протоколе:

РЕЗУПЬТАТЫ ИСПЫТАНИЙ

		РЕЗУЛ	БТАТЫ ИСП	ЫТАНИИ		T T TT
оказателя по НД, ТР ТС по		Нормы по ГОСТ 31680	по ГОСТ по Проекту		Фактические значения	НД на методы анализа
	033/2013			3	4	5
1	2					
Метрические ха Масса нетто, г	рактеристика:			(±0,05)	180,00	ГОСТ 8.579-2002; ГОСТ 3622-68
Органолептиче	ские показателі	и:	Упаковка		Образец упакован в	Визуально
Внешний вид упакованного продукта			различной формы плотная, не вскрытая, не нарушенная и без повреждений.		прозрачную емкость из полимерных материалов, маркировка закрыта непрозрачной полимерной пленкой черного цвета, упаковка не вскрытая, целостность не нарушена, без повреждений	

Jucm 2

Продолжение таблицы (Протокол испытаний №0314/20 от 07.02.2020г.) 5 2 Органо-Достаточно Однородная, Однородная, в Мягкая лептически Консистенция и плотная, слегка нежная, в меру меру плотная, с мажущаяся или внешний вид рыхлая, с плотная, с видимым или рассыпчатая с наличием наличием или ОЩУТИМЫМ наличием ощутимых частиц без наличия наличием ощутимых частиц внесенных ощутимых вносимых молочного белка компонентов частиц компонентов или без них. При (изюм) внесенных добавлении компонентов пищевкусовых компонентов - с их наличием Скормовым Чистый Чистый, Чистый Вкус и запах запахом и кисломолочный кисломолочный, кисломолочный, привкусом, вкус сладкий, с , сладкий, с допускается сладкий привкусом привкусом и привкус сухого молока. При вносимых ароматом введении сахара компонентов внесенного или наполнителя подсластителей - в меру сладкий. При He добавлении допускается пищевкусовых кормовой компонентов привкус обусловленный добавленными компонентами Белый с От белого до Белый, белый с Белый или с Цвет желтоватым белого с кремовым кремовым оттенком кремовым оттенком или оттенком, оттенком или обусловленный равномерный или обусловленный цветом обусловленный цветом вносимых добавленными компонентов внесенного компонент компонента Отсутствуют Не допускаются Наличие посторонних примесей (сгустки, комки и т.д.) Физико-химические показатели: ΓΟCT 5867-90 18,00 (± 0.30) 17,0-23,0 Не менее 23,0 Не менее 0,1 Массовая доля жира, %** ГОСТ 34454-8.71 $(\pm 0, 15)$ Не менее 8,0 Не менее 7,0 Не менее 0,6 Массовая доля 2018 белка, %** ГОСТ Р 48,16 (± 0.30) Не более 41,0 60,0-41,0 Массовая доля 54668-2011 влаги, %** ГОСТ Р 18,29 $(\pm 0,5)$ Не менее 26,0 12,0-26,0 Массовая доля 54667-2011 сахарозы, %** ГОСТ Р 15,55 $(\pm 0,4)$ Массовая доля 54761-2011 COMO, %** ГОСТ Р 137.0 $(\pm 3,5)$ 150,0-160,0 Не более 160,0 Кислотность, 54669-2011 °T ГОСТ 3623-Отсутствует ---Фосфатаза 2015 ГОСТ 33528-Не выявлено ---Содержание 2015 белков белков растительного немолочного происхождения происхождения, в творожной части продукта. % ** Контроль показателей продукта осуществляют после удаления компонентов

Продолжение таблицы (Протокол испытаний №0314/20 от 07.02.2020г.)

1	2	3	4	5	<u>6</u>	7
Показатели окис		70				
Показатели окис. Перекисное число в жире, выделенном из продукта, ммоль активного кислорода/кг	и јельной пој			(±0,02)	0,48	FOCT ISO 27107-2016
Стабилизаторы:				(110.00/	II G	ГОСТ 31503-
Содержание каррагинана, мг/кг		Не допускается		(±10,0% относ)	Не обнаружено (Менее 0,02)	2012
Консерванты:				(100,00/	Не обнаружено	ГОСТ
Содержание пропионовой кислоты, мг/кг			Не допускается	(±23,0% относ.)	(Менее 0,20)	31504-2012
Микотоксины:					77 7	ГОСТ 30711-
Афлатоксин М ₁ , мг/кг	Не дог	ускается (менее	0,0005)	(±4,0% относ.)	Не обнаружено (Менее 0,0002)	2001
Токсичные элеме	енты:					ГОСТ 30178-
Свинец, мг/кг		Не более 0,3		(±0,004)	Менее 0,004	96
Мышьяк, мг/кг		Не более 0,2		(±0,001)	Менее 0,001	ГОСТ Р 51766-2001
Кадмий, мг/кг		Не более 0,1		(±0,002)	Менее 0,002	ГОСТ 30178- 96
Ртуть, мг/кг		Не более 0,02		(±0,001)	Менее 0,001	ГОСТ 26927-86
Радионуклиды:						
Цезий-137,		Не более 100,0			1,2	ГОСТ 32161- 2013
Бк/кг Стронций-90, Бк/кг		Не более 25,0		(±0,90)	1,0	ГОСТ 32163- 2013
	еские показато	ели:				F007733001
Микробиологические показатели: Микроскопичес кий препарат Микрофлора характерная для творожной закваски, отсутствие клеток посторонней микрофлоры			-	Кокки, диплококки, единичные дрожжи и плесени	FOCT 32901- 2014	

Протокол испытаний распространяется только на предоставленные для испытания образцы. Настоящий протокол не может быть частично или полностью воспроизведен и распространен без разрешения

Протокол испытаний № 871 от 4 февраля 2020 г.

лабораторный номер (11763)

Образец: Масса творожная с изюмом. Шифр образца 152РСК0009/2. Номер пломбы 09038265

Заявитель: АНО "Роскачество" 115184, г. Москва, Средний Овчинниковский переулок, д.12

Упаковка: мешок из полимерного материала, горловина которого скреплена пломбой с оттиском 09038265. Целостность не

Этикетка: 152РСК009/2

Задание: ТЗ АНО "Роскачество"

Заключение:

Результаты испытаний

Микробиологические показатели

Наименование показателя, ед.измерения	Результат	Нормы	
Молочнокислые микроорганизмы , в 1,0 г		Пормы	Метод испытаний
толе текнолые микроорганизмы, в 1,0 г	7,0x10^8		FOCT 33951-2016

исследование проводилось в конце срока годности.

Начало испытаний: 31.01.2020 Экончание испытаний: 04.02.2020

лабораторный номер (581)

Протокол испытаний № 594 от 28 февраля 2020 г.

Образец: Масса творожная с изюмом. Шифр образца 152РСК0009/2. Номер пломбы 09038265

Изготовитель:,

Заявитель: АНО "Роскачество" 115184, г. Москва, Средний Овчинниковский переулок, д.12

Упаковка: образец помещен в полимерный пакет, опечатанный пластиковой пломбой:09038265. Целостность упаковки и пломбы

не нарушены.

Этикетка: 152РСК0009/2

Задание: ТЗ АНО "Роскачество"

Заключение:

Результаты испытаний

изико-химические показатели	Результат	Нормы	Метод испытаний
Наименование показателя, ед.измерения	не обнаруж.(менее		FOCT 31504-2012
Содержание бензойной кислоты , мг/кг	50,0)		
Содержание сорбиновой кислоты , мг/кг	не обнаруж.(менее 1.0)		ГОСТ 31504-2012
Апельсиновый желтый (Е 110)	не обнаруж.(менее		ГОСТ 31504-2012
Тартразин Е 102	не обнаруж.(менее		FOCT 31504-2012
Массовая доля крахмала , %	не обнаруж.(менее		ГОСТ 54759-2011 п.7
Содержание сукралозы , мг/кг	не обнаруж.(менее		ГОСТ Р ЕН 16155-2015
Содержание аспартама , мг/кг	не обнаруж.(менее		ГОСТ Р ЕН 12856-2010
Содержание сахарина и его солей сахаринатов (в	не обнаруж.(менее		ГОСТ Р ЕН 12856-2010
пересчете на сахарин), мг/кг Содержание Ацесульфама калия , мг/кг	не обнаруж.(менее 1)		ГОСТ Р ЕН 12856-2010
Массовая концентрация цикламовой кислоты и ее солей цикламатов (в пересчете на цикламовую кислоту), мг/кг	не обнаруж.(менее		ГОСТ Р ЕН 12857-2010
Масляная кислота (от суммы ЖК), %	2,84±0,4		ГОСТ 32915-2014
	1,71±0,4		ГОСТ 32915-2014
Капроновая кислота (от суммы ЖК), %	1,07±0,4		ГОСТ 32915-2014
Каприловая кислота (от суммы ЖК), %	2,32±0,4		ГОСТ 32915-2014
Каприновая кислота (от суммы ЖК), %	0,30±0,4		ГОСТ 32915-2014
Деценовая кислота (от суммы ЖК), %	2,71±0,4		FOCT 32915-2014
Лауриновая кислота (от суммы ЖК), %	9,65±2,2		ГОСТ 32915-2014
Миристиновая кислота (от суммы ЖК), %	0,0012,2		Страни

Результаты испытаний касаются только образцов, подвергнутых испытаниям.

Частичная перепечатка протокола без разрешения испытательной лаборатории запрещена.

Страница 1 из 2

К протоколу испытаний № 594	0.0010.4	FOCT 32915-2014
Ииристолеиновая кислота (от суммы ЖК), %	0,89±0,4	ГОСТ 32915-2014
Пальмитиновая кислота (от суммы ЖК), %	28,05±2,2	FOCT 32915-2014
Тальмитиновая кислота (от суммы ЖК) %	1,53±0,4	
Пальмитолеиновая кислота (от суммы ЖК), %	12,21±2,2	FOCT 32915-2014
Стеариновая кислота (от суммы ЖК), %	28,01±2,2	FOCT 32915-2014
Олеиновая кислота (от суммы ЖК), %		ГОСТ 32915-2014
Линолевая кислота (от суммы ЖК), %	2,56±0,4	FOCT 32915-2014
Линоленовая кислота (от суммы ЖК), %	0,35±0,4	
JINHOUGHORAN KNOTICTA (CT CYMMETYTAT), 06	0,18±0,4	ГОСТ 32915-2014
Арахиновая кислота (от суммы ЖК), % Бегеновая кислота (от суммы ЖК), %	0.05±0,4	FOCT 32915-2014

Показатели безопасности	Decum Tat	Нормы	Метод испытаний	
Наименование показателя, ед.измерения	Результат		ГОСТ 23452-2015	
Гексахлорциклогексан (a, b, y - изомеры) , мг/кг	менее 0,001		FOCT 23452-2015	
ДДТ и его метаболиты , мг/кг	менее 0,001		MYK 4.2.2304-07	
ГМО растительного происхождения (отн.%)	не обнаруж.(менее 0,1)		W17 K 4.2.2304-07	

Микробиологические показатели	Результат	Нормы	Метод испытаний	
наименование показателя, ед.измерения			ГОСТ 32901-2014	
БГКП (колиформы) , в 0,01 г	обнаружены		ГОСТ 31659-2012	
Патогенные микроорганизмы, в т.ч. сальмонеллы , в 25,0	не обнаружены		1001 31039-2012	
Γ	не обнаружены		ГОСТ 30347-2016	
стафилококки S.aureus , в 0,1 г	1.1x10^9		ГОСТ 33951-2016	
Молочнокислые микроорганизмы , в 1,0 г			ГОСТ 32031-2012	
листерии L. monocytogenes , в 1,0 г	не обнаружены		ГОСТ 33566-2015	
Плесени, КОЕ , в 1,0 г	20			

Начало испытаний: 24.01.2020 Экончание испытаний: 28.02.2020

Протокол испытаний № 10-1176 от 06.02.2020, Редакция: 1.

При исследовании образца: Масса творожная с изюмом

нормативный документ по которому произведен продукт: информация не предоставлена

заказчик: АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ "РОССИЙСКАЯ СИСТЕМА КАЧЕСТВА", ИНН:

9705044437, 115184, Российская Федерация, г. Москва, Средний Овчинниковский пер., д. ДОМ 12

основание для проведения лабораторных исследований: Акт приема-передачи образцов для проведения исследований/испытаний, Автономная некоммерческая организация "Российская система качества" (Роскачество)

место отбора проб: Российская Федерация, г. Москва, информация не предоставлена

отбор проб произвел: информация не предоставлена

НД, регламентирующий правила отбора: информация не предоставлена

вид упаковки доставленного образца: пакет

состояние образца: контроль первого вскрытия опломбированной упаковки сохранен, целостность потребительской упаковки не нарушена

масса пробы: 0,572 килограмма дата поступления: 24.01.2020 11:30

даты проведения испытаний: 24.01.2020 - 06.02.2020

на соответствие требованиям: Техническое задание № 2/20 от 22 января 2020 г.

примечание: проба для испытаний доставлена в пакете, опломбирована красной пластиковой пломбой. Номер пломбы 09038266. Шифр пробы: 152PCK0009/3. Количество точечных проб в упаковке: 3 шт. Представитель Заказчика Сорокованов А.Ф.

получен следующий результат:

№ n/n	Наименование показателя	Ед. изм.	Результат испытаний	Погрешность (неопределенность)	Норматив	НД на метод испытаний
A6. A	мфениколы					
1	Хлорамфеникол	мкт/кг	не обнаружено на уровне определения метода (менее 0,20)	-	~	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
40.1	І итроимидазолы		-			
2	Гидроксиметронидазол	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-		ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
3	Диметридазол	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
4	Ипронидазол	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициплинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором

5	Метронидазол	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)		*	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
6	Ронидазол	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)			ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
7	Тернидазол	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-		ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пеницилинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
8	Тинидазол	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)			ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
A6. H	итрофураны и их метаболиты				***************************************	
9	Метаболиты нитрофуранов (метаболит фурадонина - АГД)	мкг/кг	не обнаружено на уровне определения метода (менее 1,0)	-	-	ГОСТ 32014-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания метаболитов нитрофуранов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
10	Метаболиты нитрофуранов (метаболит фуразолидона - AO3)	мкг/кг	не обнаружено на уровне определения метода (менее 1,0)	-	-	ГОСТ 32014-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания метаболитов нитрофуранов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
11	Метаболиты нитрофуранов (метаболит фуралтадона - AMO3)	мкг/кг	не обнаружено на уровне определения метода (менее 1,0)	-	-	ГОСТ 32014-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания метаболитов нитрофуранов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
12	Метаболиты нитрофуранов (метаболит фурацилина - CEM)	мкг/кг	не обнаружено на уровне определения метода (менее 1,0)	.	B)	ГОСТ 32014-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания метаболитов нитрофуранов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
B1. A	миногликозиды		1		,	
13	Стрептомицин	мкг/кг	не обнаружено на уровне определения метода (менее 100,0)	-	□	ГОСТ 32798-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания аминогликозидов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
B1. A	нтибиотики тетрациклиновой групі	ы				
14	Тетрациклиновая группа	мкг/кг	не обнаружено на уровне определения метода (менее 1)		-	ГОСТ 31694-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания антибиотиков тетрациклиновой группы с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
14.1	Доксициклин	мкг/кг	не обнаружено на уровне определения метода (менее 1)	æ	-	ГОСТ 31694-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания антибиотиков тетрациклиновой группы с помощью высокоэффективной жидкостной фоматографии с масс-спектрометрическим детектором
14.2	Окситетрациклин	мкг/кг	не обнаружено на уровне определения метода (менее 1)	-	-	ГОСТ 31694-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания антибиотиков тетрациклиновой группы с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором

14.3	Тетрациклин		мкг/кг	не обнаружено на уровне определения метода (менее 1)	-	-	ГОСТ 31694-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания антибиотиков тетрациклиновой группы с помощью высокоэффективной жидкостной хроматографии с
14.4		- d	мкт/кт	не обнаружено на уровне определения метода (менее 1)	-	-	масс-спектрометрическим детектором ГОСТ 31694-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания антибиотиков тетрациклиновой группы с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
B1	Линкозамиды		2			-	
15	Клиндамицин	1	мкг/кг	не обнаружено на уровне определения метода (менее 1)	¥	£	ГОСТ 34136-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания макролидов, линкозамидов и плевромутилинов с помощью высокоэффективной жидкостной хроматографии с массспектрометрическим детектированием
16	Линкомицин	T)	mkr/kr	не обнаружено на уровне определения метода (менее 1,5)		-	ГОСТ 34136-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания макролидов, линкозамидов и плевромутилинов с помощью высокоэффективной жидкостной хроматографии с массспектрометрическим детектированием
17	Пирлимицин		мкт/кг	не обнаружено на уровне определения метода (менее 1)	-	-	ГОСТ 34136-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания макролидов, линкозамидов и плевромутилинов с помощью высокоэффективной жидкостной хроматографии с массспектрометрическим детектированием
B1. I	Макролиды						
18	Кларитромицин	a a	мкг/кг	не обнаружено на уровне определения метода (менее 1)	-		ГОСТ 34136-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания макролидов, линкозамидов и плевромутилинов с помощью высокоэффективной жидкостной хроматографии с массспектрометрическим детектированием
19	Спирамицин	1 9 1	мкт/кг	не обнаружено на уровне определения метода (менее 2)	÷	-	ГОСТ 34136-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания макролидов, линкозамидов и плевромутилинов с помощью высокоэффективной жидкостной хроматографии с массспектрометрическим детектированием
20	Тилвалозин		мкг/кг	не обнаружено на уровне определения метода (менее I)	×	s -	ГОСТ 34136-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания макролидов, линкозамидов и плевромутилинов с помощью высокоэффективной жидкостной хроматографии с массспектрометрическим детектированием
21	Тилмикозин		мкг/кг	не обнаружено на уровне определения метода (менее 1)	-	-	ГОСТ 34136-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания макролидов, линкозамидов и плевромутилинов с помощью высокоэффективной жидкостной хроматографии с массспектрометрическим детектированием
22	Тилозин	4	мкг/кг	не обнаружено на уровне определения метода (менее 5)		~	ГОСТ 34136-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания макролидов, линкозамидов и плевромутилинов с помощью высокоэффективной жидкостной хроматографии с массспектрометрическим детектированием
23	Тулатромицин		мкг/кг	не обнаружено на уровне определения метода (менее 1)	-	-	ГОСТ 34136-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания макролидов, линкозамидов и плевромутилинов с помощью высокоэффективной жидкостной хроматографии с массспектрометрическим детектированием
24 B1. He	Эритромицин		MKT/KT	не обнаружено на уровне определения метода (менее 10)	-	ï#	ГОСТ 34136-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания макролидов, линкозамидов и плевромутилинов с помощью высокоэффективной жидкостной хроматографии с массспектрометрическим детектированием
	, группа	:1		т-			
25	Амоксициллин		мкт/кг	не обнаружено на уровне определения метода (менее 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором

26	Ампициллин	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	*	n ₂	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
27	Бензилпенициллин	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
28	Диклоксациллин	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	ď	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
29	Клоксациллин	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)			ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
30	Оксациллин	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	0-	1-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
31	Феноксиметилпенициллин	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
В1. П	Ілевромутилины					
32	Валнемулин	мкг/кг	не обнаружено на уровне определения метода (менее 20)	-	-	ГОСТ 34136-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания макролидов, линкозамидов и плевромутилинов с помощью высокоэффективной жидкостной хроматографии с массспектрометрическим детектированием
33	Тиамулин	мкг/кг	не обнаружено на уровне определения метода (менее 1)	~	-	ГОСТ 34136-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания макролидов, линкозамидов и плевромутилинов с помощью высокоэффективной жидкостной хроматографии с массспектрометрическим детектированием
B1. 0	Сульфаниламиды					
34	Сульфадиазин	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	2	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
35	Сульфадиметоксин	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
36	Сульфамеразин	мкг/кг	не обнаружено на уровне определения метода (менес 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
37	Сульфаметазин	мкг/кг	не обнаружено на уровне определения метода (менес 1,00)		-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором

38	Сульфаметаксазол	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
39	Сульфаметоксипиридазин	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-	-:	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
40	Сульфамоксол	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
41	Сульфапиридин	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
42	Сульфатиазол	мкт/кт	не обнаружено на уровне определения метода (менее 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
43	Сульфахиноксалин	мкт/кт	не обнаружено на уровне определения метода (менее 1,00)	-	=	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
44	Сульфахлорпиридазин	MKT/KT	не обнаружено на уровне определения метода (менее 1,00)		-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
45	Триметоприм	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-	۵	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
B1. II	ефалоспориновые антибиотики					
46	Цефадроксил	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	1	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
47	Цефаклор	мкг/кг	не обнаружено на уровне определения метода (менее 5)	~ s	€:	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
48	Цефалексин	мкг/кг	не обнаружено на уровне определения метода (менее 5)	2	-	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
49	Цефалоним	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	-	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием

50	Цефапирин	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	æ	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
51	Цефацетрил	м кг/кг	не обнаружено на уровне определения метода (менее 5)	-	-	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
52	Цефепим	мкг/кг	не обнаружено на уровне определения метода (менее 5)		-	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
53	Цефетамет	мкг/кг	не обнаружено на уровне определения метода (менее 5)		-	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
54	Цефкином	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	÷	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
55	Цефоперазон	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	-	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
56	Цефотаксим	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	-	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
57	Цефотиам	мкг/кг	не обнаружено на уровне определения метода (менее 5)		= 0	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
58	Цефпиром сульфат	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	-	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
59	Цефподоксим	mkr/kr	не обнаружено на уровне определения метода (менее 5)	-		ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
60	Цефтибутен	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	_	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием

Применяемое оборудование:

№ п/п	Наименование оборудования	Дата поверки/аттестации
1	Весы лабораторные электронные GH-252	25.11.2019
2	Весы неавтоматического действия XP 56DR	15.03.2019
3	Весы электронные GF-600	25.11.2019
4	Весы электронные GF-600	25.11.2019
5	Дозатор механический одноканальный. 1000-5000 мкл	18.09.2019
6	Дозатор TRANSFERPETTE 1000 мкл	14.03.2019
7	Дозатор TRANSFERPETTE Handy Ster (100-5000) мкл	06.09.2019
8	Дозатор механический одноканальный 1000-10000 мкл	18.09.2019
9	Масс-спектрометр QTrap 6500+	06.06.2019
10	Масс-спектрометр квадрупольный 4000 Q Тгар	11.03.2019

11	Настольная центрифуга с охлаждением Allegra X - 12R	02.09.2019
12	Система быстрого испарения на 48 позиций Turbo Vap LV	Не требуется
13	Система очистки воды SIMPLISITY	Не требуется
14	Система твердофазной экс-тракции Манифолд	Не требуется
15	Хромато-масс-спектрометр жидкостной, модель EVOQ Elite	13.01.2020
16	Центрифуга Allegra X64R	12.11.2019
17	Центрифуга многофункциональная Thermo Scientifik SL40/40R	13.07.2019
18	Центрифуга настольная Beckman Coulter Avanti J-15R	12.11,2019
19	Шейкер вортексного типа Multi Reax Heidolph в комплекте с двумя креплениями, для 26 и 12 пробирок	Не требуется

Примечание:

Испытательный Центр

не несет ответственности за отбор образцов, проведенный заказчиком.

Результаты испытаний распространяются только на образец, подвергнутый испытанию. Настоящий протокол не может быть полностью или частично воспроизведен в какой бы то ни было форме без письменного разрешения

В графе "Результат испытаний" после слова "менее" указано числовое значение, которое является нижним пределом количественного определения (нижним пределом диапазона определения), предусмотренным нормативным документом на метод испытаний.

Протокол испытаний № 10-1188 от 06.02.2020, Редакция. 1.

При исследовании образца: Масса творожная с изюмом

нормативный документ по которому произведен продукт: информация не предоставлена заказчик: АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ "РОССИЙСКАЯ СИСТЕМА КАЧЕСТВА", ИНН:

9705044437, 115184, Российская Федерация, г. Москва, Средний Овчинниковский пер., д. ДОМ 12 основание для проведения лабораторных исследований: Акт приема-передачи проб для проведения

исследований/испытаний, Автономная некоммерческая организация "Российская система качества" (Роскачество)

место отбора проб: Российская Федерация, г. Москва, информация не предоставлена

отбор проб произвел: информация не предоставлена

НД, регламентирующий правила отбора: информация не предоставлена

состояние образца: контроль первого вскрытия опломбированной упаковки сохранен, целостность потребительской упаковки не нарушена

дата поступления: 24.01.2020 11:30

даты проведения испытаний: 24.01.2020 - 06.02.2020

на соответствие требованиям: Техническое задание №2/20 от 22 января 2020 г.

примечание: проба для испытаний доставлена в пакете, опломбирована красной пластиковой пломбой. Номер пломбы 09038266. Шифр пробы: 152РСК0009/3. Количество точечных проб в упаковке: 3 шт. Представитель

Заказчика Сорокованов А.Ф.

получен следующий результат:

№ n/n	Наименование показателя	Ед. изм.	Результат испытаний	Погрешность (неопределенность)	Норматив	НД на метод испытаний
A6. A	мфениколы		***			
1	Флорфеникол	мкі/кг	не обнаружено на уровне определения метода (менее 1,0)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
2	Флорфеникол амин	мкг/кг	не обнаружено на уровне определения метода (менее 1,0)	·	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
B1. A	миногликозиды					•
3	Амикацин	мкг/кг	не обнаружено на уровне определения метода (менее 100,0)	-	-	ГОСТ 32798-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания аминогликозидов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
4	Апрамицин	MKT/KT	не обнаружено на уровне определения метода (менее 400,0)	-	-	ГОСТ 32798-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания аминогликозидов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
5	Гентамицин ол № 10-1188 от 06.02.2020	мкт/кг	не обнаружено на уровне определения метода (менее 20,0)	-	-	ГОСТ 32798-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания аминогликозидов с помощью высокоэффективной жидкостной жроматографии с масс-спектрометрическим детектором

6	Гигромицин Б	мкг/кг	не обнаружено на уровне определения метода (менее 100,0)	-	-	ГОСТ 32798-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания аминогликозидов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
7	Дигидрострептомицин	мкг/кг	не обнаружено на уровне определения метода (менее 100,0)		-	ГОСТ 32798-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания аминогликозидов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
8	Канамицин	мкг/кг	не обнаружено на уровне определения метода (менее 40,0)	-	*	ГОСТ 32798-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания аминогликозидов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
9	Неомицин	мкг/кг	не обнаружено на уровне определения метода (менее 200,0)	-	-	ГОСТ 32798-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания аминогликозидов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
10	Паромомицин	mkr/kr	не обнаружено на уровне определения метода (менее 200,0)	-		ГОСТ 32798-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания аминогликозидов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
11	Спектиномицин	MKT/KT	не обнаружено на уровне определения метода (менее 100,0)	-	(H)	ГОСТ 32798-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания аминогликозидов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
B1. C	Сульфаниламиды					
12	Сульфагуанидин	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
13	Сульфаниламид	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)	-	-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
14	Сульфаэтоксипоридазин	мкг/кг	не обнаружено на уровне определения метода (менее 1,00)		-	ГОСТ Р 54904-2012 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания сульфаниламидов, нитроимидазолов, пенициллинов, амфениколов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
B1. 2	Кинолоны	-				
15	Данофлоксацин	мкг/кг	не обнаружено на уровне определения метода (менее 1)	-		ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
16	Дифлоксацин	мкг/кг	не обнаружено на уровне определения метода (менее 1)		-	ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
17	Ломефлоксацин	M KT/KT	не обнаружено на уровне определения метода (менее 1)		-	ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
18	Марбофлоксацин	мкт/кг	не обнаружено на уровне определения метода (менее l)	-	-	ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором

19	Налидиксовая кислота	мкг/кг	не обнаружено на уровне определения метода (менее 1)	-	-	ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
20	Норфлоксацин	мкг/кг	не обнаружено на уровне определения метода (менее 1)	-	-	ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
21	Оксолиновая кислота	MKT/KT	не обнаружено на уровне определения метода (менее 1)	ı -	-	ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
22	Офлоксацин	мкт/кт	не обнаружено на уровне определения метода (менее 1)	E	-	ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
23	Пипемидовая кислота	мкг/кг	не обнаружено на уровне определения метода (менее 1)	-	Tig .	ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
24	Сарафлоксацин	мкг/кг	не обнаружено на уровне определения метода (менее 1)	*	-	ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
25	Флумекин (Flumequine)	мкг/кг	не обнаружено на уровне определения метода (менее 1)	-		ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
26	Ципрофлоксацин	мкг/кг	не обнаружено на уровне определения метода (менее 1)	=	-	ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
27	Энрофлоксацин	MKT/KT	не обнаружено на уровне определения метода (менее 1)	•		ГОСТ 32797-2014 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания хинолонов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектором
B1. II	ефалоспориновые антибиотики					
28	Дезацетил цефапирин	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	¥	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
29	Цефсулодин	MKT/KT	не обнаружено на уровне определения метода (менее 5)	-	.	ГОСТ 34137-2017 - Продукты пищевые, продовольственное сырье. Метод определения остаточного содержания цефалоспоринов с помощью высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием
В1. П	олипептиды					
30	Актиномицин	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	jë	МУ А 1/045 - Методические указания по арбитражному определению остаточного содержания полипептидных антибиотиков в продукции животноводства методом высокоэффективной жидкостной хроматографии с массспектрометрическим детектором
31	Бацитрацин В	мкг/кг	не обнаружено на уровне определения метода (менее 1)	-	-	МУ А 1/045 - Методические указания по арбитражному определению остаточного содержания полипептидных антибиотиков в продукции животноводства методом высокоэффективной жидкостной хроматографии с массспектрометрическим детектором

32	Бацитрацин А	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	-	МУ А 1/045 - Методические указания по арбитражному определению остаточного содержания полипептидных антибиотиков в продукции животноводства методом высокоэффективной жидкостной хроматографии с массспектрометрическим детектором
33	Вирджиниамицин М1	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-		МУ А 1/045 - Методические указания по арбитражному определению остаточного содержания полипептидных антибиотиков в продукции животноводства методом высокоэффективной жидкостной хроматографии с массспектрометрическим детектором
34	Вирджиниамицин SI	мкг/кг	не обнаружено на уровне определения метода (менее 5)			МУ А 1/045 - Методические указания по арбитражному определению остаточного содержания полипептидных антибиотиков в продукции животноводства методом высокоэффективной жидкостной хроматографии с массспектрометрическим детектором
35	Колистин А	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	-	МУ А 1/045 - Методические указания по арбитражному определению остаточного содержания полипептидных антибиотиков в продукции животноводства методом высокоэффективной жидкостной хроматографии с массспектрометрическим детектором
36	Колистин В	мкг/кг	не обнаружено на уровне определения метода (менее 3.75)	-	-	МУ А 1/045 - Методические указания по арбитражному определению остаточного содержания полипептидных антибиотиков в продукции животноводства методом высокоэффективной жидкостной хроматографии с массспектрометрическим детектором
37	Новобиоцин	мкг/кг	не обнаружено на уровне определения метода (менее 5)	21	29	МУ А 1/045 - Методические указания по арбитражному определению остаточного содержания полипептидных антибиотиков в продукции животноводства методом высокоэффективной жидкостной хроматографии с массспектрометрическим детектором
38	Полимиксин В1	мкг/кг	не обнаружено на уровне определения метода (менее 5)	-	-	МУ А 1/045 - Методические указания по арбитражному определению остаточного содержания полипептидных антибиотиков в продукции животноводства методом высокоэффективной жидкостной хроматографии с массспектрометрическим детектором
39	Полимиксин В2	мкг/кг	не обнаружено на уровне определения метода (менее 2.5)		-	МУ А 1/045 - Методические указания по арбитражному определению остаточного содержания полипептидных антибиотиков в продукции животноводства методом высокоэффективной жидкостной хроматографии с массспектрометрическим детектором

Применяемое оборудование:

№ п/п	Наименование оборудования	Дата поверки/аттестации	
1	Весы лабораторные электронные GH-252	25.11.2019	
2	Весы неавтоматического действия XP 56DR	15.03.2019	
3	Весы электронные GF-600	25.11.2019	
4	Весы электронные GF-600	25.11.2019	
5	Дозатор механический одноканальный. 1000-5000 мкл	18.09.2019	
6	Дозатор TRANSFERPETTE 1000 мкл	14.03.2019	
7	Дозатор TRANSFERPETTE Handy Ster (100-5000) мкл	06.09.2019	
8	Масс-спектрометр QTrap 6500+	06.06.2019	
9	Настольная центрифуга с охлаждением Allegra X - 12R	02.09.2019	
10	Система быстрого испарения на 48 позиций Turbo Vap LV	Не требуется	
11	Система очистки воды SIMPLISITY	Не требуется	
12	Система твердофазной экс-тракции Манифолд	Не требуется	
13	Хромато-масс-спектрометр жидкостной, модель EVOQ Elite	13.01.2020	
14	Центрифуга Allegra X64R	12.11.2019	
15	Центрифуга многофункциональная Thermo Scientifik SL40/40R	13.07.2019	
16	Центрифуга настольная Beckman Coulter Avanti J-15R	12.11.2019	
17	Шейкер вортексного типа Multi Reax Heidolph в комплекте с двумя креплениями, для 26 и 12 пробирок	Не требуется	

Примечание:

Испытательный Цент

не несет ответственности за отбор образцов, проведенный заказчиком.

Результаты испытаний распространяются только на образец, подвергнутый испытанию. Настоящий протокол не может быть полностью или частично воспроизведен в какой бы то ни было форме без письменного разрешения

В графе "Результат испытаний" после слова "менее" указано числовое значение, которое является нижним пределом количественного определения (нижним пределом диапазона определения), предусмотренным нормативным документом на метод испытаний.